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Figure 1. We introduce INTRINSIC LORA (I-LORA) that reveals the hidden capabilities of various generative models. This includes
VQGAN (a), StyleGAN-XL (b), StyleGAN-v2 (c), and Stable Diffusion (d). Our approach uses a low-rank adaptation (LoRA) method to
modulate key feature maps. These include attention layers in VQGAN and Stable Diffusion and affine layers in StyleGAN. This modulation
allows the models to reveal intrinsic properties such as normals, depth, albedo, and shading. I-LORA effectively uses the existing decoder for
intrinsic image extraction, which was previously utilized for RGB image generation. It does so without the need for new layers, showcasing
the deep, inherent understanding these models have of complex scene intrinsics.

Abstract

Generative models have been shown to be capable of syn-
thesizing highly detailed and realistic images. It is natural
to suspect that they implicitly learn to model some image
intrinsics such as surface normals, depth, or shadows. In
this paper, we present compelling evidence that generative
models indeed internally produce high-quality scene intrin-
sic maps. We introduce INTRINSIC LORA (I-LORA), a
universal, plug-and-play approach that transforms any gen-
erative model into a scene intrinsic predictor, capable of
extracting intrinsic scene maps directly from the original

generator network without needing additional decoders or
fully fine-tuning the original network. Our method employs
a Low-Rank Adaptation (LoRA) of key feature maps, with
newly learned parameters that make up less than 0.6% of the
total parameters in the generative model. Optimized with a
small set of labeled images, our model-agnostic approach
adapts to various generative architectures, including Diffu-
sion models, GANs, and Autoregressive models. We show
that the scene intrinsic maps produced by our method com-
pare well with, and in some cases surpass those generated
by leading supervised techniques.
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1. Introduction

Generative models are capable of producing high-quality im-
ages that can be mistaken for real-world photographs. These
models display a seemingly profound understanding of the
world, capturing the nuances of realistic object placement,
appearance, and lighting conditions. However, the mecha-
nisms by which these models acquire such detailed knowl-
edge remain largely unexplored. One of the most pressing
questions in this context is: What kind of knowledge do gen-
erative models rely on to produce such high-quality images?
Are they manipulating abstract, high-level representations
of the world, working with more physical, concrete scene
representations, or perhaps a combination of both?

Recent work has begun to shed light on this question.
For instance, Bhattad et al.[8] demonstrated that StyleGAN
can encode important scene intrinsics like depth and nor-
mals. Similarly, Zhan et al.[60] showed that diffusion mod-
els can understand 3D scenes in terms of geometry and
shadows. Chen et al.[11] found that Stable Diffusion’s in-
ternal activations encode 3D depth and saliency maps that
can be extracted with linear probes. Three independent
groups [22, 37, 51] found correspondences in generative dif-
fusion models without explicit supervision. However, these
studies are often model-specific and do not address whether
these capabilities are inherent to all large-scale generative
models or are a result of specific architectural choices.

In this paper, our goal is to understand the underlying
knowledge present in all types of generative models. We
employ Low-Rank Adaptation [25] (LoRA) as a unified ap-
proach to extract scene intrinsic maps—namely, normals,
depth, albedo, and shading—from different types of gen-
erative models. Our method, which we have named as
INTRINSIC LORA (I-LORA), is general and applicable to
diffusion-based models, StyleGAN-based models, and au-
toregressive generative models. Importantly, the additional
weight parameters introduced by LoRA constitute less than
0.6% of the total weights of the pretrained generative model,
serving as a form of feature modulation that enables easier
extraction of latent scene intrinsics. By altering these mini-
mal parameters and using as few as 250 labeled images, we
successfully extract these scene intrinsics.

Why is this an important question? Our motivation is
three-fold. First, it is scientifically interesting to understand
whether the increasingly realistic generations of large-scale
text-to-image models are correlated with a better understand-
ing of the physical world, emerging purely from applying a
generative objective on a large scale. Second, rooted in the
saying “vision is inverse graphics” — if these models capture
scene intrinsics when generating images, we may want to
leverage them for (real) image understanding. Finally, analy-
sis of what current models do or do not capture may lead to
further improvements in their quality.

How is what we do related to fine-tuning or linear

Model Pretrain Type Domain Normal Depth Albedo Shading
VQGAN [16] Autoregr. FFHQ
SG-v2 [31] GAN FFHQ
SG-v2 [59] GAN LSUN Bed
SG-XL [50] GAN FFHQ
SG-XL [50] GAN ImageNet X X X X
SD-UNet [46] Diffusion Open
SD [46] Diffusion Open

Table 1. Summary of scene intrinsic extraction capabilities across
different generative models without changing generator head.
Intrinsics can be extracted with high quality. ~: Intrinsics cannot
be extracted with high quality. x: Intrinsics cannot be extracted.

probing? Previous approaches that explore extracting intrin-
sics from trained generative models include fine-tuning the
models [63] or (usually linear) probing [11]. Fine-tuning a
model, using a dataset of images paired with target scene
intrinsic maps, yields a new model, no longer capable of
generating images. Since all or most of the parameters have
changed, it is unclear whether the fine-tuned model’s ability
to produce, say, scene depth is also inherent in the original
model. In contrast, our [-LORA approach only introduces a
tiny number of extra parameters, effecting minimal change
and leaving the original model easily accessible.

We do not construct additional “layers” on top of model
activations, like the probing methods. Instead, we learn to
leverage the existing model along with the “adaptor” (LoRA)
so that it produces a scene intrinsic map. In this we take
advantage of the fact that for all the intrinsics we study,
these maps can be represented as an image with up to three
channels— something the generative models are already set
up to produce, albeit the nature of these new images is dif-
ferent, requiring the LoRA feature modulation.

What specifically do we study? We conduct experi-
ments with a variety of generative models: diffusion mod-
els [24, 32, 46], GANs [29, 31] and autoregressive mod-
els [16]. While diffusion models such as StableDiffu-
sion [46] or Imagen [48] have perhaps received most lime-
light recently, the most recent generation of other types of
models such as GigaGAN [27], CM3leon [58], and Parti [57]
appear able to produce images of similar quality. We believe
it is important to study all of these, and even more important
to consider a general framework that would be applicable to
all these models — and perhaps to others yet to be proposed.

We evaluate the quality of the intrinsics extracted from
the generative models on both real and synthetic images. As
training targets, we use predictions by state of the art spe-
cialized networks trained on large datasets as pseudo ground
truth. When available, we also compare the predicted intrin-
sics to real ground truth. Finally, we inspect the correlation
between the generator’s image quality and the quality of the
intrinsics that can be extracted from it.

Our findings reveal that all types of the generative models
we study contain rich information about scene intrinsics
that can be easily extracted using LoRA. A summary of
our findings is in Table 1, with more details in Section 4.
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Figure 2. Scene intrinsics from different generators — VQGAN, StyleGAN-v2, and StyleGAN-XL — trained on FFHQ dataset: The first
column shows the original synthetic images produced by each model. The subsequent columns show the scene intrinsics corresponding to
surface normals, depth, albedo, and shading, as extracted by a SOTA-non-generative model and our methodology (I-LORA). For surface
normals, the images highlight the models’ ability to infer surface orientations and contours. The depth maps display the perceived distances
within the images, with warmer colors indicating closer objects and cooler colors representing further ones. Albedo maps isolate the intrinsic
colors of the subjects, removing the influence of lighting and shadow. Finally, the shading maps capture the interplay of light and surface,
showing how light affects the appearance of different facial features. Intriguingly, there appears to be a correlation between the fidelity of
the generated images and the accuracy of the surface normals extracted. This suggests that the more sophisticated the image generation
capabilities of a model, the more precisely it can replicate the nuances of real-world physics in its scene intrinsics.

Our work takes a significant step towards demystifying the
intrinsic capabilities of generative image models. It also
may open new avenues for leveraging generative models in
various applications, from computer vision to graphics and
beyond, where these intrinsics are important. In summary,
our main contributions are:

¢ Showing that the same INTRINSIC LORA method is suffi-
cient for general scene intrinsic extraction across various
generative models.

* Demonstrating high-quality scene intrinsic extraction out-
performing SOTA supervised dense prediction models on
some tasks, with minimal addition of parameters (less than
0.6% of the number of the original model parameters in
all cases) and as little as 250 labeled images.

* Demonstrated correlation between the quality of scene

intrinsic maps extracted and the image generation quality
of a model. This provides an alternative perspective for
evaluating generative models.

2. Related Work

Generative Models: Generative Adversarial Networks
(GANS) [20] have been widely used for generating real-
istic images. Variants like StyleGAN [29], StyleGAN2 [31]
and GigaGAN [27] have pushed the boundaries in terms of
image quality and control over the generated content. Some
works have explored the interpretability of GANSs [4, 8], but
few have delved into their ability to capture scene intrinsics.

Diffusion models, such as Denoising Score Matching [55]
and Noise-Contrastive Estimation [21], have been used for
generative tasks and are perhaps the most popular at the



moment [24, 32, 46]. These models have been shown to
understand complex scene intrinsics like geometry and shad-
ows [60], but their generalizability across different scene
intrinsics is less explored.

Autoregressive models like PixelRNN [53] and Pixel-
CNN [52] generate images pixel-by-pixel, offering fine-
grained control but at the cost of computational efficiency.
More recently, VQ-VAE-2 [45] and VQGAN [16] have com-
bined autoregressive models with vector quantization to
achieve high-quality image synthesis. While these mod-
els are powerful, their ability to capture and represent scene
intrinsics has not been thoroughly investigated.

Scene Intrinsics Extraction: Barrow and Tenenbaum [3]
highlighted several important fundamental scene intrinsics
that include depth, albedo, shading, and surface normals.
Several works have focused on extracting scene intrinsics
like depth and normals from images [5, 14, 15, 28, 35, 44]
using labeled annotated data. Labeled annotations of albedo
and shading are hard to find and as the recent review in [17]
shows, methods involving little or no learning have remained
competitive until relatively recently. However, these works
often rely on supervised learning and do not explore the
capabilities of generative models in this context.

Many recent studies have utilized generative models such
as [1, 2, 26, 33, 40, 49, 56, 62, 63] as pretrained feature
extractors or scene prior learners. These models use gener-
ated images to enhance downstream discriminative models,
fine-tune the original generative model for a new task, learn
new layers, or develop new decoders to produce desired
scene intrinsics. InstructCV [19] executes different computer
vision tasks via natural language instructions, abstracting
task-specific design choices. However, it requires retraining
of the entire diffusion model. It’s still unclear whether the
original models inherently capture important scene intrinsics
information as implicit knowledge or not.

Knowledge in Generative Models: Several studies have
explored the extent of StyleGAN’s knowledge, particularly
in the context of 3D information about faces [42, 61] provide
substantial evidence of StyleGAN'’s capability in this area.
Further research has demonstrated that manipulating offsets
in StyleGAN can lead to effective relighting of images [6],
as well as the extraction of scene intrinsics [8].

Chen et al.[11] found that the internal activations of the
LDM encode linear representations of both 3D depth data
and a salient-object / background distinction. Recently, [22,
37, 51] found correspondence emerges in image diffusion
models without any explicit supervision.

Self-supervised models like DINO [10, 12, 41] focus on
learning useful representations without using labeled data.
Although not generative, these models serve as a relevant
baseline for understanding the quality of scene intrinsics that
can be extracted from learned representations.

LoRA (Low-Rank Adaptation) is a technique originally

used to reduce the cost of fine-tuning large language models
for downstream tasks [25]. The approach involves freez-
ing the pre-trained model weights and introducing trainable
low-rank decomposed matrices into specific layers of model
architecture. These matrices are the only components up-
dated during task-specific optimization. This results in a
significant reduction in the number of trainable parameters.
LoRA has been used for various personalization applications
of image generators [47]. In contrast, we use LoRA as a
unified and efficient method for extracting scene intrinsics
across various types of generative models. It does this by
identifying key feature maps in each of them to modulate
— attention layer in diffusion models, linear affine layers in
StyleGAN and convolutional attention layer in VQGAN.

3. Methods

In the most general formulation, a generative model G
maps noise/conditioning information z to an RGB image
G(z) € REXWX3 We seek to augment G with a small set
of parameters # that allow us to produce, using the same
architecture as (=, an image-like object with up to three chan-
nels, representing scene intrinsics like surface normals.

The learning framework:We learn to extract intrinsics
in a supervised fashion. Since in most cases (some domains,
generated images) we do not have ground truth intinsics,
we use state of the art models (trained on large datasets) to
predict “pseudo ground truth” maps, e.g., estimated depth
for an image, and treat these as a target for the predictions
of Gg .

In order to optimize 6 of Gy we employ a pseudo-ground
truth predictor ® (e.g., a network trained to predict depth
map from an image), leading to the objective function:

minE. [d(Gy (=), ®(G(2))], (1)

where d is a distance metric that depends on the intrisic we
wish to learn.

Diffusion models require a more tailored treatment, since
they are effectively image-to-image and not noise-to-image
(since during inference they repeatedly get a noisy image
as input). Thus instead of conditioning noise z we feed an
image z(generated or real) to a diffusion model G. In this
case, given a real image x, our objective function becomes
ming E,[d(Ge(z), D(x))].

We describe the metric d and the pseudo-ground truth
predictors @ used for each intrinsic in Section 4.1.

Low-Rank Adaptation Low-Rank Adaptation (LoRA)
is a parameter-efficient technique for adapting pre-trained
neural networks to novel tasks by introducing a low-rank
weight matrix W*. Initially devised for language models
[25], LoRA has since been extended to image generation
models where it is primarily used to enable the generation
of new characters, objects, or styles [47].
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Figure 3. Overview of our INTRINSIC LORA applied to a single-step diffusion model. We fine-tune low-rank matrices corresponding to
key feature maps—specifically, attention matrices—to elicit scene intrinsics. Distinct low-rank adaptors, indicated by color-coded ¢ (e.g.,
purple for surface normals), are optimized for each intrinsic. We leverage a limited set of labeled examples to empower generative models
to directly extract scene intrinsics using the original decoder, circumventing the need for specialized decoders or comprehensive model

retraining.

In LoRA, W* is designed to have a lower rank than the
original weight matrix W € R% %92 achieved by factoriz-
ing W* into two smaller matrices, W* = W W, W €
R4 %d" and wr e R¥" *d2 where d* < min(dy, dg).

The output o for an input activation a is then given by:

o=Wa+W*"a=Wa+ W, Wa. 2)

To preserve the original model’s behavior at initialization,
W is set to zero. We next describe how we leverage LoRA
modules to extract intrinsics from Diffusion models, GANSs,
and Autoregressive models.

When adapting diffusion models for intrinsic extraction
we learn I-LORA adaptors on top of the cross-attention and
self-attention layers. We treat the UNet as a dense prediction
model, applying it once to an RGB input with the goal of
getting an intrinsic map as output. We find this gives the
best quantitative results. The text input depends on the in-
trinsic and is simply “surface normal, “depth”, “albedo”, or
“shading”. The timestep input is set to T=1.0 (i.e. full noise),
we also tested T=0.0 and it yielded equivalent results. An
overview of I-LORA is in Figure 3.

When adapting GANs we learn I-LORA modules on top
of the affine layers projecting from w-space to s-space.

When adapting VQGAN, an autoregressive model, we
learn I-LORA modules on top of the the convolutional at-
tention layers in the decoder.

4. Experiments
4.1. Implementation Details

Notably the compute, parameter, and data requirements for
learning these adaptors is extremely light. In all cases we
use I-LORA adaptors with rank 8 which add less than 0.6%
to the original parameters. We provide detailed training
hyperparameters in the supplement.

To generate pseudo ground truth for depth we use
ZoeDepth [5] as the predictor ® in Equation (1). For surface
normals ® is OmniDataV2-Normal [14, 28]. For Albedo
and Shading ® is Paradigms [7, 17].

For SG2, SGXL and VQGAN, d in Equationl is

d(x,y) = 1—COS(£L‘,y)+ ||l‘—y||1 (3)

for normal and MSE for other intrinsics. For latent diffusion
based methods, there isn’t a clear physical meaning to the
relative angle of latent vectors in encoded normal maps, so
we use the standard objective of MSE for all intrinsics.

4.2. Synthetic Image Experiments

We begin I-LORA by extracting intrinsics from gener-
ated images. We consider a variety of generative mod-
els (StyleGAN-v2, StyleGAN-XL, VQGAN) trained on a
variety of datasets (FFHQ, LSUN Bedrooms, ImageNet).
For each model trained on a particular dataset, we train



Surface Normals

StyleGANv2

Image Omni-v2 [28] I-LORA ZoeDepth [5]

I-LoRA

Shading

I-LoRA Paradigms [7]  I-LORA

Figure 4. Scene intrinsics extraction from Stylegan-v2 trained on LSUN bedroom images.
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Figure 5. StyleGAN-XL trained on ImageNet. Top: pan, bottom: laptop, with the corresponding scene intrinsics (pseudo ground truth and
extracted) alongside. The surface normals and depth maps, while capturing the basic shape and volume, lack precise detail and exhibit
artifacts. The albedo maps fail to consistently separate texture from lighting, and the shading maps do not fully capture the nuanced interplay
of light and surface. These difficulties are correlated with the overall worse realism of the generated images.

Model Pretraining Type Domain LoRA Param. Surface Normal Depth Albedo Shading

Mean Error®,  Median Error®| L1 Errorxiw] RMSxmw| §<1.25xmwT RMSxw) RMSxinl
VQGAN Autoregressive FFHQ 0.18% 19.97 20.97 16.33 1.819 62.33 0.345 0.106
StyleGAN-v2 GAN FFHQ 0.57% 16.78 19.22 13.72 1.530 90.74 0.283 0.110
StyleGAN-XL GAN FFHQ 0.29% 14.87 18.22 12.27 1.337 93.87 0.287 0.125
StyleGAN-v2 GAN LSUN Bedroom 0.57% 13.24 23.57 10.91 0.897 66.88 0.270 0.074
StyleGAN-XL GAN ImageNet 0.29% 24.09 25.52 19.44 2.175 38.38 1.065 0.119
AUGUNET (multi step) Diffusion Open 0.18% 2141 28.57 17.39 2.042 41.21 0.881 0.099
SD UNet (single step) Diffusion Open 0.18% 16.63 23.64 13.69 1.179 52.59 0.487 0.118

Table 2. Quantiative analysis of scene intrinsics extraction performance on generated images. We compare with pseudo ground truths from
Omnidata-v2 for surface normals, ZoeDepth for depth, Paradigms for albedo and shading. Metrics include mean angular error, median
angular error, and L1 error for surface normals; rms and § < 1.25 for depth; rms for albedo and shading. We also include results of SD
UNet and AUGUNET (described in details in Sec 5) on 1000 synthetic images with various prompts for completeness.

I-LORA adaptors to produce surface normals, depth, albedo,
and shading aligned with the RGB images produced by the
original generator. We generally find the I-LORA adaptors
can successfully produce predictions that approximately
match the pseudo ground-truth quantitatively (Table 2), and
qualitatively produce compelling results (Figures 2, 4).

We use the 2562 resolution checkpoints for VQGAN,
StyleGAN-v2 and StyleGAN-XL trained on FFHQ dataset;
with FID [23] scores of 9.6 [16], 3.62 [30] and 2.19', respec-
tively. Our qualitative results in Table 2 indicate a decreasing
FID (i.e. better image generation) correlates with better in-
trinsic prediction.

One exception to this is StyleGAN-XL trained on Im-
ageNet, which we find to produce reasonable quantitative

Thttps://github.com/autonomousvision/stylegan-x1

metrics, but poor qualitative results. We attribute this to the
underlying quality of the generative model, noting that many
samples from this model could never be mistaken for natural
images (Figure 5). This generally supports our finding that
the stronger the generative model, the higher the quality of
the extracted intrinsics.

4.3. Real Image Experiments

While I-LORA results on synthetic images and pseudo-
ground truth are suggestive, they are difficult to judge objec-
tively. Fortunately, diffusion models are not only powerful
image generators, their structure as image-to-image models
makes it straightforward to apply to real images. We adapt
Stable Diffusion’s (SD’s) Unet to extract intrinsics but ap-
ply it once as a dense predictor, rather than iteratively as



Model Pretraining Type Surface Normal Depth
Mean Error®| Median Error®) L1 Errorxiw) RMSxiwn] § < 1.25x1071
Omnidata-v2 [28]/ZoeDepth [5] Supervised 18.90 13.36 15.21 2.693 47.56
DINOv2 Non-Generative 19.74 13.72 16.00 2.094 44.32
AUGUNET (multi step) Diffusion 23.74 19.08 19.31 2.651 43.19
SD UNet (single step) Diftusion 20.31 12.54 16.53 2.046 44.90

Table 3. Quantitative analysis of scene intrinsic extraction performance across different models on real images. See caption of Tab 2 for
details on pseudo-ground truth and metrics.

Mean Angular Error®} 18.90 19.74 27.73 2222 20.31 21.26 21.64

L1 Error (x 100) | 15.21 16.00 22.46 18.05 16.53 17.33 17.64

(a) Real (b) GT (c) Omni-v2 [28] (d) DINOv2[41] (e) 250 (f) 1000 (g) 4000 (h) 16000 (i) 24895
Figure 6. Ablation study on the number of training samples using a single step SD UNet. We use surface normal prediction to illustrate.
Column (c) is the Omnidata-v2 pseudo label we use for training. Numbers below columns (e) to (i) are the number of samples used during
training. The results demonstrate that even with a limited dataset comprising a few hundred images, the pretrained stable diffusion model can
discern substantial surface normal details. Notably, with a dataset size of merely 4000 samples, our approach accurately captures challenging

areas, such as the top left distant walls in (a). We started all models with SD v1-5 and LoRA rank=8.

Mean Angular Error®| 18.90 19.74

22.57 20.31 21.17 21.84

L1 Error (x 100 )J 15.21 16.00

18.39 16.53 17.19 17.81

W’ I3 : ........
[

(a) Real (b) GT

() Omni-v2 [28] ())DINOV2 [41] (e) Rank =2

(f) Rank =4 (g) Rank=8 (h)Rank=16 (i) Rank =32

Figure 7. Ablation study—LoRA’s Rank. Numbers under columns (e) to (i) are the numbers of ranks of LoRA. 8 achieves memory efficiency
and gives good results. All models are trained with SD v1-5 and 4000 samples.

in diffusion. We train I-LOR A adaptors for surface normal
and depth extraction using a random subset of 4000 train-
ing pairs from the DIODE [54] training set. While we use
pseudo ground truth during training, DIODE provides real
ground truth we can use for quantitative evaluation.

We find that not only I-LORA adaptors capable of
roughly matching the performance of ® (which provided
the training signal) while using far less data, parameters, and
training time; but they even surpass ® in several metrics (Ta-
ble 3). A potential explanation is that the intrinsic implicitly
learned by the generative model is actually more accurate
than that learned by the supervised SOTA predictor .

4.4. Ablation Studies

In our investigation, we conduct a series of ablation studies
focusing on our single step SD UNet model, which has the

highest quantitative performance. We explore the impact of
the number of labeled examples on the model’s ability to
extract scene intrinsics (Figure 6), compare multiple versions
of stable diffusion models to further explore how improved
generation quality affects extrinsic extraction (Figure 10,
and determine the optimal rank for our low-rank adaptations
(Figure 7). In short these ablation studies reveal that higher
quality generative models lead to better intrinsic extraction,
and that the quality of intrinsic extraction saturates with fairly
few training samples (4000) and low rank LoRAs (rank 8).

4.4.1 Comparison with DINOv2

A natural question is how do the features learned by genera-
tive models compare with those from other self-supervised
foundation models. To provide a preliminary benchmark we



(a) Real Image (b) Omni-v2  (c) DINOv2 (d)AucUNer1.5 (e) AUGUNET (f) GT (g) ZoeDepth  (h)DINOv2 (i) AucUNEer1.5 (j) AUGUNET (k) GT
Figure 8. Detailed Scene Intrinsic Extraction with Improved Diffusion Techniques from Our AUGUNET models: We show scene intrinsics
derived from generative models alongside supervised counterparts. AUGUNETI1.5 is the same as AUGUNET except it uses SD1.5 and
does not use Zero SNR strategy. AUGUNET1.5 presents sharper details, especially in complex areas — thin structures like lamp stand and
car. AUGUNET, on the other hand, illustrates a significant improvement in reducing color shifts while maintaining detail sharpness, as seen
in the comparison with ground truth (GT) data in the last row.

a

Figure 9. Results of AUGUNET models applied on unseen 10242 synthetic images. For each group, from left to right, we have: image,
surface normal, depth, albedo and shading, respectively. The first row contains results from the I-LORA . The second row contains the
corresponding pseudo ground truth from off-the-shelf SOTA methods.



Mean Angular Error®| 21.84 21.41 20.31
L1 Error (x 100) | 17.78 17.38 16.53
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Figure 10. Through an ablation study of various Stable Diffusion
versions using a single-step method, we observe a correlation be-
tween the quality of the generative model and the accuracy of the
extracted scene intrinsics. Our analysis includes Stable Diffusion
versions 1.1, 1.2, and 1.5, each demonstrating significant enhance-
ments in image generation capabilities, which in turn improve the

fidelity of scene intrinsics extraction.

SD UNet

Image Omni-v2 [28]

SD1.5 (multi) AUGUNET

Figure 11. Single-step diffusion (SD UNet) yields satisfactory
results, but multiple diffusion steps lead to misalignment in the ex-
tracted intrinsics, as shown in the SD1.5 (multi-step) column. The
last column, AUGUNET , demonstrates the successful rectification
of these misalignments using our image conditioning approach,
resulting in well-aligned and coherent scene intrinsics extractions

apply our I-LORA framework to DINOv2 [41] , a SOTA
general purpose visual feature extractor. We start with their
best and largest model, “giant”, and apply rank 8 LoRA
modules to all attention layers. In addition, we must learn
a small linear head to project DINO output to 3 channels
(1 channel in the case of depth). These modules lead to
a parameter increase of 0.26%, similar to those added for
generative models (Table 2). We train these parameters on
DIODE images using the same procedure outlined in Section
4.3, finding that the results are comparable to our best model
single-step model based on SD, see Table 3.

5. Towards Improved Intrinsic Extraction

Our findings suggest that Stable Diffusion models inherently
capture various scene intrinsics like normals, depth, albedo,
and shading, as evidenced by our single-step SD Unet exper-
iments. However, a natural question is: can we enhance the

quality of the intrinsics by leveraging the multi-step diffusion
inference? While multi-step diffusion improves sharpness,
in practice we find that it introduces two challenges: 1. intrin-
sics is misaligned with input, and 2. a shift in the distribution
of outputs relative to the ground truth (visually manifesting
as a color shift) (see Figure 11).

To address the first challenge, we augment the noise input
to the UNet with the input image’s latent encoding, as in
InstructPix2Pix [9] (IP2P). The second challenge is a known
artifact attributed to Stable Diffusion’s difficulty generating
images that are not with medium brightness [13, 34]. Lin
et al. [34] propose a Zero SNR strategy that reduces color
discrepancies but requires diffusion models trained with v-
prediction objective, which SD1.5 is not. Beneficially, Stable
Diffusion v2.1 employs a v-prediction objective. Therefore
we replace SD1.5 with SD2.1 while maintaining our previ-
ously described learning protocol.

We call this multi-step variation with augmented SD2.1
UNet AUGUNET. AUGUNET solves the misalignment is-
sue and reduces the color shift significantly as shown in
Figure 8, resulting in the generation of high-quality, sharp
scene intrinsics with much improved quantitative accuracy.
In Figure 9 , we show how AUGUNET performs on un-
seen 10242 synthetic domain while trained exclusively on
5122 real-world images. However, quantitatively, the results
still fall short of our SD Unet (single step) result, DINOv2
and Omnidatav2. In the future, we hope this problem will
be solved by improved sampling techniques and the next
generation of generative image models.

6. Conclusion

We find consistent, compelling evidence that generative mod-
els implicitly learn physical scene intrinsics, allowing tiny
LoRA adaptors to extract this information with minimal fine-
tuning on labeled data. More powerful generative models
produce more accurate scene intrinsics, strengthening our
hypothesis that learning this information is a natural byprod-
uct of learning to generate images well. Finally, across
various generative models and the self-supervised DINOv2,
scene intrinsics exist in their encodings resonating with fun-
damental “scene characteristics” as defined by Barrow and
Tenenbaum [3].

We hope that future work expands on these findings. For
example explicitly incorporating the production of scene
intrinsics into the learning process of generative image mod-
els, or developing evaluation metrics for generative models
based on physical properties.
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7. Control Experiment

To understand whether the intrinsic images extracted by
our approach are primarily attributed to the LoRA layers or
if they emerge from the underlying generative pretraining
of the models themselves, we conducted a control experi-
ment. We adopted the same single-step training protocol
used with our SD UNet model, but with a crucial modifi-
cation: instead of SDv1.5, we used a UNet with random
initial weights. The results, as shown in Figure 12, clearly
indicate the randomly initialized model’s bad performance,
both in numerical metrics and visual quality. This suggests
that the ability to extract surface normals is not merely a
byproduct of our I-LOR A layers but significantly relies on
the sophisticated feature representations developed during
the generative pretraining of the model.

Mean Angular Error®) 18.90 36.18 20.31

L1 Error (x 100) | 15.21 29.28 16.53

(a) Real (b) GT (¢) Omni-v2 [28] (d) Random (d)SDvl.5
Figure 12. Control experiment to test the effectiveness of using
a randomly initialized UNet when compared to Stable Diffusion
pretrained UNet for extracting surface normals using I-LORA.
The results of this experiment are presented in column (d), while
the results of our SD UNet (single step) model are presented in
column (e). Both experiments were identical except for the pre-
trained weights used in the UNet. A UNet that has been initialized
randomly has difficulties in extracting surface normal-like represen-
tations. Based on our findings, we can conclude that the intrinsic
representation is an emergent property of generative pretraining.

8. Additional Ablation Studies
8.1. Number of Diffusion Steps

To assess the impact of the number of diffusion steps on
the performance of multi-step AUGUNET models, we con-
ducted an ablation study. The results are presented in Fig-
ure 13. For all our experiments in the main text, we used
DPMSolver++ [36]. Interestingly, the quality of results did
not vary significantly with an increased number of steps,
indicating that 10 steps are sufficient for extracting better
surface normals from the Stable Diffusion. Nevertheless, we

use 25 steps for all our experiments because it is more stable
across different image intrinsics.

8.2. CFG scales

When using multi-step AUGUNET , the quality of the final
output is influenced by the choice of classifier-free guidance
(CFG) during the inference process. In Figure 14, we present
a comparison of the effects of using different CFG scales.
Based on our experiments, we found that using CFG=3.0
results in the best overall quality and minimizes color-shift
artifacts.

9. Extracting Intrinsics with other Stable Diffu-
sion Image Editing Methods

We experiment with other Stable diffusion-based image edit-
ing methods that can learn certain concepts/styles without
the need to finetune the entire network. In Figure 15, we
show that without the additional image latent encoding we
proposed as AUGUNET, SDEdit [38] has difficulty in gener-
ating aligned surface normals for the given image. Moreover,
our attempts to integrate a distinct style token for “surface
normal” using the Textual Inversion technique [18], as well
as optimizing token embeddings in the manner of VISII [39],
did not yield satisfactory outcomes, as evidenced in Fig-
ure 16.

10. Hyper-parameters

In Table 4, we show the hyperparameters we use for each
model.

11. Additional Qualitative Results

In Figure 17, we present more results for AUGUNET and
AUGUNETL.5 . Figure 18 shows extra results for models
trained on FFHQ dataset. More examples of scene intrinsics
extracted from StyleGAN-v2 trained on LSUN bedroom can
be found in Figure 19. In Figure 20, we show results for SD
Unet (single step) on generated images. Shown in Figure 21
are extra results for StyleGAN-XL trained on ImageNet.

12. Results on 10242 synthetic images

Our AUGUNET models, although trained exclusively on
5122 images from the DIODE dataset, demonstrate their
robustness by successfully extracting intrinsic images from
10242 high-resolution synthetic images generated by Stable
Diffusion XL [43], as shown across Figures 22 to 31



Mean Angular Error®] 25.83 23.79 23.48 23.86 23.79 23.74 23.67
L1 Error (x 100) | 21.08 19.39 19.10 19.40 19.35 19.31 19.25
I g . - o .

Image GT Omni-v2 [28] Steps=2 Steps=5 Steps=10 Steps=15 Steps=20 Steps=25 Steps=50

Figure 13. Ablation study to determine the effect of varying numbers of diffusion steps while keeping CFG fixed at 3.0. Our findings show
that there are very small differences, both in terms of quantity and quality, after 10 steps. For our main paper, we report results for 25 steps
as it is more stable across different intrinsics.

Model Dataset Resolution Rank LR  BS LoRA Params Generator Params  Steps Till Convergence
VQGAN FFHQ 256 8 le-03 1 0.13M 873.9M ~ 1500
StyleGAN-v2 FFHQ 256 8 le-03 1 0.14M 24.8M ~ 2000
StyleGAN-v2 LSUN Bedroom 256 8 le-03 1 0.14M 24.8M ~ 2000
StyleGAN-XL FFHQ 256 8 le-03 1 0.19M 67.9M ~ 1000
StyleGAN-XL ImageNet 256 8 le-03 1 0.19M 67.9M ~ 2500
AUGUNET (multi step) Open 512 8 le-04 4 1.59M 943.2M ~ 30000
SD UNet (single step) Open 512 8 le-04 4 1.59M 943.2M ~ 15000

Table 4. Hyper-parameters for each model. LR refers to the learning rate and BS refers to the batch size. Please note that the number of
steps required to reach convergence reported above is for normal/depth. However, it is worth noting that albedo and shading tend to require
significantly fewer steps to converge. Additionally, AUGUNET and SD UNet are trained on real-world DIODE dataset, while the other
models are trained on synthetic images within a specific domain. (Num. of params of VQGAN counts transformer + first stage models;
Num. of params of AUGUNET and SD UNet counts VAE+UNet)



Mean Angular Error®] 24.28 23.48 25.72 27.80 29.85 31.93 34.12
L1 Error (X 100) | ] 1948 19.10 21.01 22.72 24.36 26.03 27.78

Image GT Omni-v2 [28] CFG=1 CFG=3 CFG=5 CFG=7 CFG=9 CFG=11 CFG=13
Figure 14. Ablation study analyzing the impact of different classifier-free guidance (CFG) on AUGUNET surface normal prediction. For
efficiency, we experimented with a step of 10. We observed that CFG=1 sometimes led to incorrect semantic predictions, particularly in the
case of stairs in row 4. On the other hand, using large CFGs (5 and beyond) results in severe color shift problems.

Image 5=0.2 5=0.5 5=0.7 s=1.0

Figure 15. We observe applying SDEdit method on the SD1.5 model alone, without incorporating the additional input image latent encoding,
fails to produce satisfactorily aligned and high-quality scene intrinsics. The reason for this is the considerable domain shift that exists
between RGB images and surface normal maps, which results in severe artifacts when using SDEdit. The variable “s” represents the strength
of SDEdit.

Image VISII [39] Textual Inversion [18]

Figure 16. We observe that applying VISII or Textual Inversion for learning surface normal results in unsatisfactory output. Although VISII
can retain some geometrical consistency, it is unable to learn surface normal. On the other hand, Textual Inversion fails completely at the
task.
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Figure 17. Additional results after applying improved diffusion techniques with AUGUNET. AUGUNET was found to significantly reduce
color shift artifacts observed in AUGUNET1.5 during the extraction of detailed scene intrinsic results.
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| < N
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Figure 18. Additional results of scene intrinsics from different generators — VQGAN, StyleGAN-v2, and StyleGAN-XL — trained on FFHQ
dataset.
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Image Omnidatav2 [28] I-LORA ZoeDepth [5] I-LORA Pai‘adlgms [7] I-LORA Paradigms [7] I-LORA
Figure 19. Additional results of scene intrinsics extraction from Stylegan-v2 trained on LSUN bedroom images.

Surface Normals Depth Albedo Shading

Image Omnidatav2 [28] I-LORA ZoeDepth [5] I-LORA Paradigms [] I-LORA Paradigms [7] I-LORA
Figure 20. Additional results for SD UNet v1.5 (single step). Note on the third row, our model correctly predicts the surface normal of the
table.
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StyleGANXL

Image Omnidatav2 [28] I-LORA ZoeDepth [5] I-LORA 7 Paradigms [7] I-LORA Paradigms [7] I-LORA
Figure 21. Additional results for StyleGAN-XL trained on ImageNet. StyleGAN-XL’s inability to produce image intrinsics may be due to its
inability to create high-quality plausible images.



Figure 22. Results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.
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Figure 23. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.



Figure 24. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.
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Figure 25. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image;

ground truth.

10



Figure 26. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.
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Figure 27. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.
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Figure 28. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.
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Figure 29. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.
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Figure 30. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.



Figure 31. Cont. results of AUGUNET models applied on unseen 10242 synthetic images. Left: original image; middle: ours; right: pseudo
ground truth.
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